

Code	Project	Release	
ST08	A40-B	Α	TECHNICAL DATASHEET

MAGNETIC SENSOR MTV H

GENERAL CHARACTERISTICS

- · Magnetic sensor for linear and angular reading.
- Resolutions up to 1 μm.
- · Contactless reading.
- Extremely easy and fast mounting of the entire measuring system, with wide alignment tolerances.
- Small size, to allow installation in narrow spaces.
- Magnetic band composed by a magnetized plastoferrite tape, with pole pitch 5+5 mm. The plastoferrite is supported by a stainless steel tape, already provided with the adhesive tape, for an easy application on the machine.
- To be used with magnetic band MP500.

MECHANICAL AND ELECTRICAL CHARACTERISTICS

MECHANICAL

- Magnetic sensor with die-cast body.
- Possibility to fix the magnetic sensor with M4 screws or with through M3 screws.
- · Wide alignment tolerances.

ELECTRICAL

- Very flexible power cable.
- Reading through positioning sensor based on magneto resistance, with AMR effect (Magnetic Anisotropy).
- · High signal stability.
- Electrical protection against inversion of power supply polarity and short circuits on output port.
- For applications where the maximum speed exceeds 1 m/s, it is necessary to use a cable suitable for continuous movements.
- CABLE

As a standard, the sensor is supplied with the following cable:

- 8-wire shielded cable \varnothing = 6.1 mm, PVC external sheath, with low friction coefficient, oil resistant;
- Conductors section: power supply 0.35 mm²; signals 0.14 mm².

PUR cable or cable with reduced section on request.

The cable's bending radius should not be lower than 60 mm.

SIGNALS	CONDUCTOR COLOR	
Α	Green	
Ā	Orange	
В	White	
B	Light-blue	
I ₀	Brown	
$\overline{I_0}$	Yellow	
+ V	Red	
0 V	Blue	
SCH	Shield	

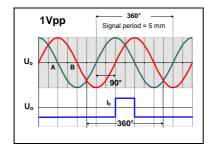
As a standard, the sensor is supplied with a 2-m cable. Longer lengths are available, with the following limits: $L_{max} = 10 \text{ m}$ sensor cable

L_{max} = 100 m 2 m sensor cable + cable extension *

eference indexes	5+5 mm C = constant step (every 5 mm) E = external up to 1 μm **		
eference indexes	E = external		
esolution	up to 1 µm **		
ccuracy	± 30 µm ***		
lax. traversing speed	12 m/s		
lax. frequency	2.4 kHz		
epeatability	± 1 increment		
, B and I₀ output signals	sine wave 1 Vpp		
ibration resistance (EN 60068-2-6)	300 m/s ² [55 ÷ 2,000 Hz]		
hock resistance (EN 60068-2-27)	1,000 m/s ² (11 ms)		
rotection class (EN 60529)	IP 67		
perating temperature	0 °C ÷ 50 °C		
torage temperature	-20 °C ÷ 80 °C		
elative humidity	100%		
ower supply	5 ÷ 28 Vdc ± 5%		
urrent consumption without load	90 mA _{MAX}		
urrent consumption with load	110 mA _{MAX} (with 5 V and R = 120 Ω) 70 mA _{MAX} (with 28 V and R = 1.2 k Ω)		
lectrical connections	see related table		
lectrical protections	inversion of polarity and short circuits		
/eight	40 g		

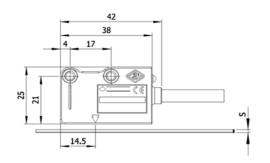
^{*} Cable extensions need to have a 0.5 mm² section for power supply conductors

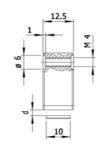
Pag. 1/2


^{**} Depending on CNC division factor.

To obtain the declared accuracy values, it is necessary to respect the alignment tolerances prescribed by the Manufacturer. Better accuracy can be obtained by reducing the gap between the sensor and the magnetic band.

Code	Project	Release	
ST08	A40-B	Α	TECHNICAL DATASHEET

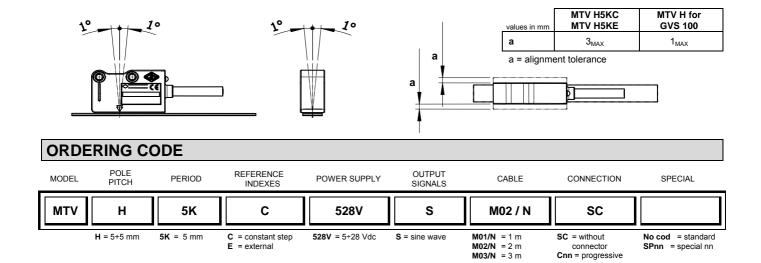

OUTPUT SIGNALS



A and B amplitude	0.6 Vpp ÷ 1.2 Vpp typical 1 Vpp		
I ₀ amplitude	0.25 V ÷ 0.6 V (usable component)		
A and B phase displacement	90° ± 10° electrical		
Reference voltage U₀	≈ 2.5 V		
Signal amplitude is referred to a differential measurement made with 120 O			

Signal amplitude is referred to a differential measurement made with 120 simpedance and a minimum power supply voltage of 5 V to the sensor.

SENSOR DIMENSIONS



values in mm	MP500	MP500 + CV103	MP500 + SP202	MP500 + GVS 100
s	1.3	1.6	2.1	7.6
d	0.3 ÷ 3	2.7 _{MAX}	2.2 _{MAX}	0.3 ÷ 1

- s = thickness
- d = distance to be maintained between sensor and surface of the magnetic band (or eventual cover/support)

SENSOR ALIGNMENT TOLERANCES

Example TMAGNETIC SENSOR MTV H 5K C 528V S M02 / N SC